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I. INTRODUCTION 

The research grant NAG 1-500 entitled "Semiconductor Superlattice 

Photodetectors" was awarded to the University of Illinois at Urbana-Champaign 

by National Aeronautics and Space Administration-Langley Research Center 

on June 27, 1984. The grant was continued on July 1, 1985. Dr. Ivan Clark 

is the Technical Officer, and Mr. John F. Royal1 is the Grants Officer. 

This report is the fourth semiannual report. 

1. Period: 

January 1. 1986 to June 30, 1986 

2 .  Reporting Date: 

July 1, 1986. 

3. Technical Personnel: 

S .  L. Chuang Assistant Professor of Electrical and Computer 

Engineering 

J. J. Coleman Professor of Electrical and Computer Engineering 

K .  Hess Professor of Electrical and Computer Engineering and 

Research Professor of Coordinated Science Laboratory 

J .  P. Leburton Assistant Professor of Electrical and Computer 

Engineering and Research Assistant Professor of 

Coordinated Science Laboratory 

Two research assistants 
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11. TECHNICAL PROGRESS 

During the past half-year period, our research effort centered on 

further investigating both the new superlattice photomultiplier with 

tunneling-assisted impact ionization and the photodetector based on the 

real space transfer mechanism. The following is a brief outline of the 

current status of these projects. Detailed analyses are included in 

Appendices A and B. New results of the tunneling-assisted impact ionization 

are presented in Appendix B and will be presented in a future publication. 

1. Superlattice Photomultiplier 

We have, recently, included the effect of tunneling in the impact 

ionization across the conduction-band-edge discontinuity. The results 

I 
I 

I 

I have been presented at the 1986 Device Research Conference. A copy 

I 

I review the motivation for our work as well as some previous work. We then 

of the viewgraphs has been included in Appendix B .  On pages B2-B4, we 

discuss our work on a new superlattice photomultiplier on pages 85-87. 

The effect of tunneling is discussed on pages B8-Bll .  It is shown that, 

1 to properly take into account the tunneling process, a numerical approach 

using the Airy function, rather than the WKB method used commonly in the 

literature, should be followed because the conventional WKB method fails 

when the electron energy is near the barrier height. It is shown in page 

B-10 that, especially on the lower energy side, tunneling lowers the 

threshold energy and enhances the ionization rate. When the energy of the 

incident electron is very high, the final energies of the two electrons 

will be high, thus they tend to be above the barrier and can contribute 

to the current without tunneling. The multiplication factor versus the 
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applied voltage is shown on page 812. It shows a smoother increase than 

that of a general avalanche photodiode. Since our device involves only 

one type of carrier (electrons), it works as an ideal photomultiplier and 

does not have the problem of the rapid increase of the multiplication 

factor versus the applied voltage. The detailed theoretical formulation 

will be shown in a future publication. On pages B13-Bl4. the experimental 

results of Capasso et al. are shown to illustrate the plausibility of our 

predicted phenomenon: i.e., the impact ionization across the conduction- 

band-edge discontinuity. 

2. Superlattice Photodetector Based on the Real Space Transfer Mechanism 

We are investigating the free carrier absorption process of a superlattice 

photodetector which makes use of the real space transfer mechanism. In 

particular, we have formulated and numerically computed the free carrier 

absorption coefficient €or bulk GaAs in which we considered a second- 

order process involving both a photon and a phonon. Additionally, we 

carried out the computations for the free carrier absorption coefficient 

in a quantum well for the above cited second-order process involving a 

photon and a phonon. We are, currently, completing the numerical calculations 

for this case. Finally, we have begun to investigate the free carrier 

absorption coefficient in a quantum well in which we consider a first-order 

process involving only a photon. 
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111. FUTURE WORK 

We shall apply our theory to the devices recently presented by 

Capasso et al. at AT&T Bell Laboratories. They have observed the predicted 

phenomenon of impact ionization in superlattice structures made of different 

materials, i.e., AlInAS/GaInAS, AlSb/GaSb, and InP/GaInAs. Though our 

theory has qualitatively predicted these phenomena, it will be interesting 

to compare the results quantitatively. The possible experimental approach 

will also be taken. 

In the area of the superlattice photodetector based on the real 

space transfer mechanism, we will continue to investigate the free carrier 

absorption process. The numerical computations of the free carrier absorption 

coefficient in a quantum well involving a second-order process of a 

photon and a phonon will be completed. The enhancement of the free carrier 

absorption coefficient for the quantum well over that of bulk GaAs will 

be examined. Additionally, we will continue our investigation of the free 

carrier absorption coefficient in a quantum well wherein a first-order 

process, employing only a photon, is involved. Consequently, we will be 

able to make a comparison between the free carrier absorption coefficients 

in a quantum well for the first- and second-order processes and determine 

which of the two is dominant. 
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IV. PUBLICATIONS 

The following manuscripts submitted for publication were supported 

either fully or partially by this Grant. The support by this Grant has 

been acknowledged in these manuscripts. 

1. S. L. Chuang and K. Hess, "Impact ionization across the conduction- 

band-edge discontinuity of quantum-well heterostructures," J .  Appl. Phys., 

V O ~ .  59, pp. 2885-2894, 1986. 

2. S. L. Chuang and K. Hess, "Impact ionization across the band-edge 

discontinuity for a superlattice photomultiplier," presented at the 1986 

Device Research Conference, Amherst, Massachusetts, June 21-23, 1986. 

3 .  S. L. Chuang, "Lateral shift of an optical beam due to leaky surface- 

plasmon excitations." J .  Opt. SOC. Am., vol. 3, pp. 593-599, 1986. 

4 .  S. L. Chuang, " A  coupled-mode formulation by reciprocity and a variational 

principle," IEEE J. Lightwave Technology, accepted for publication. 
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V. TRAVEL 

1. S .  L. Chuang attended the Conference on Optical Fiber Communication 

and the topical meeting on Integrated and Guided Wave Optics, Atlanta, 

Georgia, February 23-28. 1986. 

2. S. L .  Chuang presented a paper entitled: "Impact ionization across 

the band-edge discontinuity for a superlattice photomultiplier" at the 

1986 Device Research Conference, Amherst, Massachusetts, June 21-23, 

1986. He also visited AT&T Bell Laboratories in Murray Hill, N . J . ,  June 

20, 1986. 
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APPENDIX A 

Reprint of: "Impact Ionization Across the Conduction-Band-Edge 

Discontinuity of Quantum-Well Heterostructures" by S. L. Chuang and K. Hess, 

J. Appl. Phys., V O ~ .  59, pp. 2885-2894, 1986. 



Impact ionization across the conduction-band-edge discontinuity of 
quantum-well heterostructures 

S.L Chuang 
&+.-eit: ~f Ek~mkd lsiid Cumpier Engineering, University of Illinois at Urbana-Champaign, Urbana, 
Illinois 61801 

Department of Electrical and Computer Engineering and Coordinated Science Lobotutoiy, University of 
Illinois at Urbana-Champaign, Urbana, Illinois 61801 

(Received 9 September 1985; accepted for publication 7 January 1986) 

Impact ionization across the band-edge discontinuity of quantum-well heterostructures is studied 
theoretically. We consider a heterolayer structure of alternating Al, Gal - , As and GaAs layers 
where the GaAs layers are heavily doped with donors. Thus a large number of electrons is 
confined to the quantum-well region. Incident electrons are heated up by applied electric fields 
and collide with the electrons con!ined in the well regions. Both the ionization rate as a function of 
the incident energy, and average ionization rates are computed. Device applications of such 
multiple quantum-well structures and the possibility of a complete analog to the conventional 
photomultiplier are discussed. 

K. Hess 

1. INTRODUCTION 
Novel types of photodetectors using superlattice struc- 

tures have been proposed recently. '-lo These include the M- 

hancement of impact ionization in a superlattice for ava- 
lanche photodiodes,l4 an infrared detector using free 
carrier absorption in a heavily doped quantum-well struc- 
t ~ r e , ~  a photodetector using the transient displacement cur- 
rent effect in a sawtooth superlattice,' strained-layer super- 
lattice photodetectors?" and doping (n -bp i )  
photodetectors. ''*I2 The operational principles of all these 
new devices are very interesting and additional studies are 
needed to characterize these photodetectors completely. 

In this paper, we consider a heterolayer structure which 
consists of alternating Al, Gal - As and GaAs layers where 
the GaAs layers are heavily doped with donors (Fig. 1 1. The 
donor are electrons confined mostly to the quantum wells. 
Incident electrons (which, for example, can be generated 
optically) are accelerated by the external field and collide 
with the electrons confined in the wells as shown in Fig. 1. 
This results in impact ionization of some of the electrons 
bound in the quantum wells. The wave functions for the 
incident electrons (three dimensional) and the confined 
electrons (quasi-two dimensional) are used to calculate the 
electron-electron interaction due to the Coulomb force with 
screening effects taken into account. The quantum mechani- 
cal transition rate for a system involving an initial state of 
one free electron above the well and one bound electron in 
the well and a final state of both electrons free is calculated 
using the Golden rule. The process is schematically dis- 
played in Fig. 2. The electron-electron interaction in the 
momentum space is illustrated in Fig. 3 and will be explained 
in the next section. The average ionization rate over the mo- 
mentum (energy) distribition of all the incident hot eiec- 
trons is then calculated. Potential device applications are 
discussed in a final section. 

Our formulation for the impact ionization for the quan- 
tum-well structure is similar to the inverse Auger effect in 
bulk sernicond~ctors'~-~~ or in a quantum-well heterostruc- 

ture.'"19 The new feature is that we are interested in impact 
ionization across the conduction-band-edge discontinuity 
while previous studies are considering transitions across the 
energy band gap. Thus, the threshold energy for impact ioni- 
zation is smaller (of the order of conduction-band-cdge dis- 
continuity) than that of the interband process. The required 
bias voltage may be smaller since a smaller electric field than 
that of the conventional avalanche photodiode is needed. 

II. ANALYTICAL CONSIDERATIONS 
In this section, we present the detailed formulation of 

the impact ionization of electrons across the conduction- 
band-edge discontinuity in a heterolayer structure. First, the 
transition rate due to the electron-electron interaction is de- 
rived, then we discuss the energy distributions of the elec- 
trons confined in the quantum-well region and the incident 
hot electrons. Third, we present the impact ionization rate 
and its numerical evaluation. 

A. Transition rate 
Consider an incident free electron interacting with a 

bound electron in a quantum well; the total average transi- 
tion per unit volume P ,  is given by'9*20 

X [ 1 --f(k; I ]  [ 1 --f(k; 11, (1) 
wherefis the Fermi distribution and P:!? is the quantum 
mechanical transition rate (per unit time) between the ini- 
tial state of electron 1 in state k,, electron 2 in state k,, and 
the final state of electron 1 in state k;  and dectron 2 in state 
k; (Fig. 2) due to the electron-electron interaction: 

277 
f i  

P:::; = - I (121H* 11'2') (,6(El + E, - E ;  - s; 1. (2) 

The square of the matrix element I ( 12(Hs I 1'2') 1' is given by 
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FIG. 1. Geometry of a structure exhibiting impact ionization across the 
bandulge discontinuity of quantum wells. 

i 

( 3 )  

for the interaction by a screened Coulomb potential. Here q 
is the screening parameter which is discussed in Appendix 
A. We have neglected the difference in the dielectric con- 
stants of the two materials which is a good approximation 
for AlGaAs-GaAs. The factor of 4 in Eq. (3) takes account 
of effects of the exchange and preservation of the  pin,'^.'^ 
considering the integrations over k; and k; , and 

Initial Stole 
I H  

Final Slate 

1 
I’ 
H 
e-. 

FIG. 3. A geometrical configuration in k space to illustrate the electron- 
electron interaction integral. With both theenergy and the momentum con- 
served. the four electron wave vectors are on the same spherical surface. The 
integrations over k; and k; are restricted to the shaded portion with the z 
component between k :,, and k ,. + n d L ,  - k &, (n = 1 ). 

n a  Xexp(ik,, -r,,)sin-z2, 
L z n  

(4) 

exp(ik; - r l )  exp(ik; - rz )  
, 1 5 )  - - 

P P 
where k,, k; , k;, rl, r2 are the general three-dimensional 
vectors and k2, ,r2, are two-dimensional vectors in the quan- 
tum-well interface planes. The periodic parts uk (r )  of the 
Bloch functions associated with Eqs. (4) and ( 5 )  have been 
ignored since the overlap integral is assumed to be one for 
states in the conduction band. The effective quantum-well 
width L, is defined such that 

Em = “(E)’, 
FIG. 2. Initial and final 2m* LZ” 
slates for the electron*lec- 
tron interaction in a q w -  
turn-well structure. 

where Em is the energy level of the nth subband, which is 
calculated numerically taking into account the finite barrier 
height AEc , i.e., the conduction-band-edge discontinuity 
(see Appendix B 1. For convenience, we further define 

k z  = k,, f 2(nr/Lzn 1 = 3kx +jX, f i(n?r/L, 1, (7 )  
r2 = rZt + ir2 =b2 + j y z  +h2, (8)  

and replace the SUmmatiOnS by integrations. One then 
obtains 
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and 

The lower limit in the integration fork; is due to the fact that both k it and k h need to be larger than a certain threshold k 6 in 
order to get both electrons 1' and 2' out of the quantum well. The condition k h >k  6 imposes another condition on k ;, 
because of the relation 

n?r k b  = k, ,  f - - k ; , > k 6 .  
Lzn 

One finally obtains 

One notes that the above condition for k it  also holds for k h obviously. 

parabolic band structure." 

k 6 < k ; , < k , ,  fn?r/L, - k 6 .  ' (12) 

An upper bound of the integral of Eq. ( 11 ) without the constraints on k ;, and k h. has been obtained analytically for a 

The geometry pertinent to the evaluation of S(k,,k2) 

kz=kZ+n = kZ1 + i(n?r/L, ) ( n  = 1). 
and its upper bound S, (k,,k,) is shown in Fig. 3 for 

Due to energy and momentum conservations, the four vec- 
tors k,, k,, k; , and k; lie on a spherical surface, assuming 
that the E - k relations axe parabolic for all four vectors.22 
Due to the above mentioned constraints on both k;, and kh, 
the S(k,,k,) integral will be over the unshaded spherical 
surface in Fig. 3 for which 

while the integral for S, (k,,k,) is over the whole spherical 
surface. The latter integration can be performed analytically 
by a coordinate transformation to the polar axis k, - k,, and 
results in Eq. (13). 

k & <k iZ <kiz + TILz, - k 6, 

B. Electron distribution function f(kd in the quantum- 
well region 

region f(k? ) orflk,,) is taken as 
The electron distribution function in the quantum-well 

where 

Ki;) = J (2m+/#)EF - (n?r/Lz,, )2 

The electron concentration is given by 

(15) 
is the maximum of k 2r for electrons in the nth, subband. 

where Em is the nth quantized energy level of electron 2 as 
given in Eq. ( 6 ) .  Defining a characteristic concentration n, , 

?l,Em*kB T/?r #L,. (17) 

We have for E F  - Epn > k, T, 

(18) 
subbudr n 

From n d V ,  and the above relation or Eq. ( 16), we obtain 
EF, and thus.K ;I"'. 

C. Electron distribution function f ( k , )  for the incident 
hot electrons 

We assume that the incident hot electrons in the 
AI, Ga, - , As region (region a)  is Maxwellian in shape, i.e., 
the spherically symmetrical part is given by the expression 

f(b) = 4,,, ( P ~ / 2 m ~ k B ~ , ) j i ~ e - E ~ ' ~ ~ ' k ~ r ~  (19) 

with an electron temperature T,,  where m: is the effec- 
tive mass of the electron in the conduction band in the 
Al, Gal - , As region and the index 0 characterizes the elec- 
trons in this region. Since the energy 
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Eo = ( # / 2 m : ) ( k k  + kiY + k & )  (20 )  (#/2m,*)k: + AE, = (# /2m:)k: ,  (24 )  
is measured from the conduction-band edge in the where rnt is the average effective mass of electrons in the I? 
A, Ga, - As region, and valley of the GaAs region. (We use the average effective 

k , , = k , 2 + k o y j + k &  (21 mass m t  to include the nonparabolicity effect. The effective 
mass mr used in the previous equations is replaced by m; in 
the computations. %(See Appendix C. ) Instead of integrating 
over d k,, we integrate over d k,,, 

the energy E, and k, vector in the GaAs region (region b) 
are related to Eo and k, by the equations 

D. Average impact ionization rate 
The average ionization rate ( l h )  is defined as the total transition rate per incident electron, and therefore 
(1/r) =Pu/no= ( k k  + k i Y + k & ) ) -  1 

J*4( 2m:kBTe )Inexp( - 2m: kB T. 

(25 )  
#k f 1 

2m:kB T, r( E, 1 ’ 
where 

f(k2,) [S(k&& 1 f S(ki,k& 1 ] (26 )  
1 

r(Eg. 1 
- = -- 

which is the ionization rate for an incident hot electron with 
the energy 

(27 )  

(28 )  
Since the integrand in Eq. (25 )  is sharply peaked near 
k ,  = k ,  EO, we have used the approximations 

E, = E, = (#/2m: ) k f 

k,  = kov = 0. 
and 

(29 )  

and carried out the dk,  and dk ,  integrations in Eq. (25 ) .  
By doing so, the incident electrons are essentially z directed. 

k, = 2koz. (30) 
Thus, for the transmitted electron we have 

k, = i k , ,  (31) 

(#/2m:)k& + AE, = (# /2mt )k  :,. (32 )  
The average ionization rate ( l/r) is obtained by integrating 
Eq. (25 )  using Eq. (26) .  An upper bound of ( l h ) ,  ( l/r),, , 
is obtained using the upper bound of l/r(Eo). Dropping the 
subscript z and using Eo instead of E,, one obtains for the 
integrand of Eq. ( 25 1 

and 

X [s, (kiskg 1 + S,, (ki,k& 11. (33) 
Next we first discuss the exact numerical integrations of 1/ 
r(E,)and(l/r)inEqs. (25) and(26).Thenformulasfor 
upper bounds, 1/r(EO),,, which lead to analytical expres- 
sions for ( l/r),, are presented. 

2888 J. Appl. Phys., Vol. 59, No. 8, 15 April 1986 

111. THE NUMERICAL INTEGRATIONS 
A. Integrations 1/1(E0) and <1/~> from E q r  (25) and (26) 

To obtain l / r (Eo) ,  we need to evaluate the electron- 
electron interaction integrals S( k,,kz ) in Eq. ( 11 ). For the 
following discussion, we use k2=k&. The integral 
S( $,k; ) is obtained similarly, replacing k 2  by k& , or n r /  
L, by - nr/L,. For a parabolic band structure, and using 

(34) 
( 3 5 )  

the S(E,  + E2 - E ; - E ;  ) term in the integrand of Eq. 
( 1 1 ) can be rewritten as 

(36) (rn;f /#)  S [ ( k  iZ - k Z )  ( k  iz - k 1, 
where the two roots for k iz are 

Therefore, the k iZ integration can be performed analytically 
using the properties of the delta functions, and k ;, is re- 
stricted as given in Eq. ( 12). The other integrations can be 
simplifed as 

S. L. Chuang and K. Hess 2888 



where the two angular variables d2, for k;, and I$;, for k;, 
have been transformed to only one angular variable dI2 
which is the angle between k;, and k,, , with a 211 factor 
added as a result of this transformation because the inte- 
grand depends on dI2 only. The upper limit of k ;, variable 
K ;, is obtained from the condition that k ;; and k ;f in Eqs. 
(37) and (38) should be real, Le., 

I 

This condition is easily included in the numerical code. 
if it is vioiated, k ;: and k ;"become inaginary and the inte- 
grand vanishes because the variable of integration k ;z is real. 
Explicit solutions of Eq. (40) can also be uscd, which give 
the upper limit for k i,, 

Then l/r(Eo) can be written as 

where 

for k ;; and k 
K ;I are obtained by replacing n d L ,  by - nsr/L, in the F + function as well as in K ;: from Eqs. (41 ) and (43). 

between k &, and k + ( nr/LZn ) - k & , and zero for the appropriate terms otherwise. F - (k ;, ,k2,, d,2 ) and 

The last integration J d k ,  in ( l / ~ )  must be performed from a minimum k af;- which is obtained from Eq. ( 121, 
k,, >2k ih T ndL, ,  (44) 

and the energy conservation relation Eq. ( 32 1, 

B. The upper bounds of the integrals 1/~(€& and < 1 / ~ ) ~  using Eqa (25) and (33) 
The analytical result for the upper bound of l/r(Eo) is 

Here the G + term is due to the term with k;, and the G; term due to that with k, in Eq. (331, and 

which can be integrated numerically by Simpson's rule. 
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IV. NUMERICAL RESULTS AND DISCUSSIONS 
The direct numerical integrations of the ionization rate 

l/r(Eo) and theaverageionization rate ( 1 h )  in Eq. (25) is 
straightforward. The upper bounds of the ionization rate 
and the exact numerically integrated results as functions of 
the energy of the incident hot electrons are shown in Figs. 
4( a) and 4( b). One can see that the ionization rate increases 
rapidly when the energy Eo is above the threshold value Ei 

UPPER 
BOUNO 
OF THE 

IONIZATION 
RATE ( I / s c )  

I 
rEoIu 
- 

omm 1st Subbond 
mOOI 2nd Subbond 

3'4 Subbond - Totot 
...... 

~ 000000000000 0 0  0 0 0 

~ ~ a a a a ~ a . . , . ,  x x x x x x x x x  x x x  

...... .......... .................... 

1 I 1 I !E2 
0.5 0.75 1.0 1.25 1.5 

ENERGY OF INCIDENT. ELECTRONS ( e V )  

QzlDD 1st Subbond 
xoNIZATIoN -2nd Subband 
RATE ( Ihec)  3rd Subbond ...... - Total 

'O" t 
t 00 

ENERGY OF INCIDENT ELECTRONS ( c v )  

FIG. 4. (a) Upper boundof the impact ionization rates l/r(Eo)u as func- 
tions of the incident hot electron energy Eo(=Eoz ) for each subband and 
the sum of all three subbands. The parameters used are L, = 200 A, 
L = 1200 A, N, = 5 x 10" cm-', x = 0.35. T = 77 K, T. = 2300 K (m: 
= 0.09mo, m t  = O.IOSm, AE, = 0.262 eV). (b) Exact impact ionization 
rates from numerical integration of Eqs. (25) and (42). The same material 
parameters as those in (a) are used here. ( I/T)" = 4.4X 109/s using Eq. 
(48). and (1/r) = 1 . 4 ~  I@/s using Eqs. (25) and (42). 

for each subband n = 1,2,3. The overall minimum threshold 
energy for impact ionization will be due to the highest occu- 
pied subband of course. For a quantum-well size L, = 200 
A, Al mole fraction x = 0.35 in the Al,Ga, -,As region, 
and N, = 5 x loi8 cmq3, there are three occupied subbands 
among the six quantized levels in the well. The Fermi level is 
0.1092 eV measured from the conduction-band edge in the 
GaAs region. The threshold value for k 6 (the minimum 
value of k iZ or k h for electrons 1' and 2' to get out of the 
quantum well) is given by 

k:h =dblt(hE, -a)/* (50) 

w h m  6 accounts for the tilting of the quantum well due to 
the large applied field (Fig. 1 ) . Without space-charge effects 
we have 

GZeFL,, (51) 
where e is the magnitude of the electron charge. In all our 
computations we assume a field strength F = 10 kV/cm and 
a corresponding electron temperature of 2300 K at a lattice 
temperature of T = 77 K. (No accurate data for T, in 
Al,Ga, -,As are available to our knowledge. The above 
value is a result of Monte Carlo simulations in GaAs. In Ref. 
23 there are some discussions on F-T, relations in 
AlxGa, -,As.) The necessary parameters used here are 
taken from Refs. 24 and 25. 

The average ionization rate (VT) involves the integra- 
tion over the energy Eo and the distribution function. The 
upper bound of the impact ionization rate ~ / T ( E ~ ) ~  as a 
function of the energy Eo is shown in Fig. 4(a) for each 
subband and also for all subbands combined. These curves 
are much easier and faster to generate than the results of the 
exact numerical integration which are shown in Fig. 4(b) 
since the results in Eq. (46) are analytical expressions. They 
also can serve as a means of checking the numerical accuracy 
of the exact numerical integral in Eq. (42). This is because 
l/r(EOIu from Eq. (46) is the upper bound of the numerical 
integral of l/r(Eo) in Eq. (42). l/r(E0),, is the integration 
over the whole spherical surface in Fig. 3, for which all k; 
and L; of the two electrons are allowed everywhere on the 
spherical surface. 1/r( Eo)is the integration over only a por- 
tion of the spherical surface for which the condition 

k :h <k  iZ <k  iZ + n d L ,  - k 6 
is satisfied. If one relaxes this condition in Eq. (431, the 
results of integration (42) will be over the whole spherical 
surface, which is the upper bound. Thus a numerical test in 
Eq. (42) by simply removing the constraints on k ;, can be 
checked exactly with the analytical expression in Eq. (46). 
This process determines the number of discretized intervals 
for each integration variable in Eq. (42). One then adds the 
constraints'on both k iZ  and k & to obtain the exact numeri- 
cal integrals. 

A. The effect of multiple subbands 
As shown in Figs. 4(a) and 4(b), the ionization rates 

due to higher level subbands are clearly very important be- 
cause electrons in those subbands are in higher energy levels 
and thus easier ionized. Figure 4(a) shows the upper bounds 
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of the ionization rates for each subband and the total contri- 
bution is shown as the solid curve. The total rate in Fig. 4( a) 
has a discontinuity whenever either a new subband with a 
term corresponding to either + n d L ,  or - n d L ,  term 
comes in. The results for the exact numerical integrations for 
lh (E0)  are shown in Fig. 4( b) and the curves look smooth- 
er than those in Fig. 4(a). (The small fluctuations in the 
curves of Fig. 4( b) are due to numerical errors in the multi- 
ple integrations.) The electrons in the highest subband re- 
quire the lowest threshold energy for impact ionization and 
there are more incident hot electrons with enough energy to 
impact ionize these electrons. 

B. The effect of the quantum-well width L, 
In Figs. 5 (a) and 5 (b), we decrease L, from 200 to 80 8, 

keeping the doping concentration No the same (5.OX 10" 
cm-'1. The upper bounds of the ionized rates are shown in 
Fig. 5 (  a) and the exact numerical results are shown in Fig. 
5(b). There are three subbands for this structure and only 
the lowest one is occupied at this doping level. The ionization 
rate is smaller than the previous case in Fig. 4(b). Roughly 
speaking, it is because the number of electrons per unit area 
in the quantum-well region No L, is smaller when L, is de- 
creased and No kept the same. Although the ground level of 
a thinner quantum well is higher than that of a thicker well in 
Fig. 4(b), the higher subbands in Fig. 4(b) also contribute 
to the total ionization rate and thus the ionization rate in the 
case in Fig. 4(b) is larger. 

C. The effect of the band-edge dlscontlnulty 
In Figs. 6(a) and 6( b) , we show the upper bounds of the 

ionization rates for all subbands and the results of the nu- 
merical integrations by decnasln ' gtheAlmolefractionx 
from 0.35 to 0.25 with L, the same as that in Figs. 4(a) and 
4( b 1. We use the 60%-40% rule2427 for the conduction and 
valence-band-edge discontinuities in our calculation. If one 
uses a different rule with a number between 60% and 85% 
for the conduction-band-edge discontinuity, the ionization 
rate will decrease because the well is deeper, Once AE, is 
determined, the threshold energy for impact ionization can 
be obtained. Decreasing x will decrease AE,, thus the 
threshold energy is lowered and the impact ionization rate is 
increased. This is clearly shown in Figs. 6(a) and 6(b) as 
compared to Figs. 4(a) and 4(b). 

0. The effect of doping and the total ionization rate 
If one increases the doping concentration in the quan- 

tum wells, one expects that the ionization rate will increase 
because there are more electrons available for impact ioniza- 
tion. This is shown in Fig. 7 where the dashed line is for the 
upper bound of the ionization rate and the solid line is from 
exact numerical integration. Increasing No wili increase the 
number of occupied subbands also since the Fermi level will 
be raised higher. For each No , the computation takes about 
1500 cpu seconds as an average in the Cyber 175 Computer 
using about 1.6~ lo6 number of discretized points (40 for 
variable k 2 t ,  40 for k ;*, 20 for 4 ,2, and 50 for k (*r ) . When the 
Fermi level is raised, there will be more electrons in the high- 
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FIG. 5. (a) Upper bound of the impact ionization rate as a function of the 
incident hot electron energy Eo for a different quantum-well width L, = 80 
A. (L = 1200 ;& x = 0.35, ND = 5x 10" an-', rn: = 0.09m, m: 
= 0.105m, aE, = 0.262 eV. ) There is only one occupied subband at this 
doping level. (b) Exact impact ionization rate as a function of the incident 
hot elatron energy E, obtained from numerical integration of Eq. (25) 
using%. (42). The same paramaen as those in (a) arc used here. ( l / ~ ) "  
= 6.7X 1@/s, and (1/r) = 1.6X lO'/s. 

er subbands also and they are easier to be ionized since the 
minimum threshold energy is decreased. The other effect is 
that a higher doping concentration may also increase the 
tunneling probability of the bound electrons. This may also 
eilllance the ioaization rste. 

V. POTENTIAL FOR DEVICE APPLICATIONS 
Avalanche photodioes which in their operational char- 

acteristic come close to the ideal of the conventional photo- 
multiplier have been proposed by Capasso2" and have been 
termed solid-state photomultipliers. The principle of these 
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devices is based on a highly asymmetric ionization coeffi- 
cient for electrons (a) and holes ( 8).  A conventional pho- 
tomultiplier does not, of course, involve any holes at all. The 
question arises therefore if the new technological possibili- 
ties which are offered by MOCVD and MBE crystal growth 
techniques can be used to construct the complete solid-state 
analogy of a photomultiplier. This question was one of the 
driving forces of our calculation in the previous sections. 
Insteady of photomultiplier electrodes one would use quan- 
tum wells and the secondary electrons would be emitted into 
the neighboring AlGaAs instead of into vacuum. The results 
for the ionization rate in Figs. 4-7 indeed show that appre- 
ciable gain can be achieved if the doping of the quantum well 

w 
l- a a 

0 
t 
N 

z 

z 
0 
H 

w 
(3 a 

a 
5 
> 

DOPING CONCENTRATION ( ~ r n - ~ )  

FIG. 7. Average ionization rate ( 1/r) (solid curve) and its upper bound 
( l/r)" (dashed curve) as functions-of the doping Foncentration ND in the 
quantum well. We usc L, = 200 A, L = 1200 A. x = 0.25, T= 77 K, 
T, = 2300K.Theparametersm:,m:,and~, arethesameasinFig. 6(a). 

is - 1019 cm-3 and the number of layers is larger than - 100. 
From Fig. 7, the average ionization rate varies from lo7 to 
10" l/s. Thus the electron ionization coefficients may vary 
from around 1 to 103/cm or higher assuming the average 
electron velocity is 10' cm/s or lower. The ionization rate 
can also be increased by decreasing the band-edge discontin- 
uity. Primary electrons can be generated by the absorption of 
infrared radiation either by the electrons in the valence band 
(interband absorption as shown in Fig. 1 ) or by the quan- 
tum-well electrons which make a transition from bound to 
propagating states. The latter type of free carrier absorption 
is of first order (the quantum well provides the momentum 
and phonons are not necessary) and therefore significantly 
stronger than the free carrier absorption in bulk semicon- 
ductors. This fact has been noted by Chiu et a1." who also 
show that multiquantum-well structures (similar to our 
structure in Fig. 1, except that they also dope the GaAlAs 
regions) can be used as infrared detectors.' Chiu et al. did 
not, however, investigate the possibility of gain by the ava- 
lanche process. But, the possibility of varying the band-edge 
discontinuity (and therefore the range of infrared detection 
almost at will in the range of energies O<ho 5 0.4 eV) and 
the possibility of gain (analogous to the conventional photo- 
multiplier) are enormously attractive features. 

There are, however, also enormous technological prob- 
lems which need to be overcome to realize such a device. 
Since holes are not involved, the electrons which are ionized 
out of the well need to be replenished. This means that sepa- 
rate ohmic contacts have to be applied to a number of sets of 
quantum wells without changing the high resistivity of the 
AlGaAs layers in between. It may be possible to accomplish 
this complicated task with selective Schottky barrier con- 
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tacts which would be ohmic for the highly doped quantum 
wells. Another Severe problem is the requirement of highly 
doped quantum wells neighboring to essentially depleted 
and highly resistive AlGaAs. Both problems are not basic in 
nature and do not seem out of reach considering the recent 
progress in microstructure technology. However, more 
studies (including also the effects of field ionization) are 
needed to confirm and show the device potential of such 
structures. 

Independently, Capasso has recently performed experi- 
ments and has obtained encouraging evidence for impact 
ionization of the kind discussed in this paper. These experi- 
ments may call for an extension of our theory to include 
effects such as the tunneling-supported impact ioniza- 
tion29mw due to the band bending as shown in Fig. 1. The 
bound electrons in the quantum well may acquire a small 
amount of energy by collision with an incident hot electron 
and subsequently tunnel into the conduction band in the 
AlGaAs region. This process reduces the ionization thresh- 
old energy in each subband. Thus the ionization rates, as, for 
example, shown in Fig. 4(b), may start from a lower thresh- 
old value for each subband and may also be enhanced be- 
cause of the tunnel-impact ionization process. More work 
needs to be done to predict the precise performance of such a 
structure. 

VI. CONCLUSIONS 
The impact ionization across the conduction-banddge 

discontinuity of quantum-well heterostructures has been 
studied. A geometrical configuration to illustrate the contri- 
bution to the electron-electron interaction in the momen- 
tum space has been shown. The average ionization rate has 
also been calculated for various doping concentrations and 
geometries. We have included the contributions from the 
multisubbands and the nonparabolicity effects in our calcu- 
lations. The application of this impact ionization mechanism 
to a solid-state superlattice photomultiplier has also been 
discussed. 
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APPENDIX A THE SCREENING PARAMETER q 

given by3' 
The dielectric screening parameter in the static limit is 

which is the Thomas-Fermi screening parameter, and it re- 
&aces to 1/( Debye kiigth > for a ?*laxwellian-Bo!tzmsxn 
distribution in the case of a nondegenerate electron gas. 

When the electron concentration is degenerate, and the 
temperature is low, we obtain the Thomas-Fermi screening 
parameter using a three-dimensional density of states: 

(A21 q = ( m *e2/& ' I 2  ( 3n/lr4 'I6, 

where n is the electron concentration. 
If we consider a two-dimensional density of state 

&,(E),  we can carry out the integral in Eq. (Al )  since 
g, (E) is a constant and obtain 

q = (m+2 /&)  ( N  /d, ) (A31 
where N is the number of occupied subbands. Our calcula- 
tions for a quantum well of sizeL = 200 A and A& a0.3 eV 
show that Eqs. (A21 and (A3) give almost the same result 
for a large n. 

APPENDIX 8: THE QUANTIZED ENERGY LEVELS€- IN 
A QUANTUM WELL INCLUDING THE EFFECTIVE-MASS 
DIFFERENCE 

The energy level E- is obtained by using the boundary 
conditions 

$a =**, (B1) 

(B2) 1 *a 1 d$* 
mz a m t  a' 

at the two interfaces z = 0 and z = L, . The result is the well- 
known eigenequation: 

(B3) 
where 

--=-- 

tan kL, = k/( 1 -a2),  

k = (2mtE)  I"/+& (B4) 
a = [ ( m t / m t )  CAEc - E ) / E  ] ' I 2 .  035) 

The eigenquation (B3) includes both the even and odd so- 
lutions for the wave functions. The number of quantized lev- 
els in the quantum well is easily determined from the mite- 
rion. If 

the number of quantized levels = N. 

APPENDIX C: AVERAGE EFFECT MASS mg IN GaAa 
REGION (REGION b) WITH THE NONPARAEOLICITY 
EFFECT INCLUDED 

The E-k relation including the nonparabolic effect is 
E( 1 + aE) = ri2k ' /2m*, (C1) 

m* = 0.063 m, at 77 K, and where we use a = 0.67 (eV) 
m, is the electron mass in free space. 

Using the definition 

and 

rnt = m$ ( E ) d E  /Me, (C3) lo" 
where Mc is the conduction-band-edge discontinuity, we 
obtain anaIyticalIy 

m:=m*(l +arnC)(1 + ~ A E ,  +2a2hEf). (C4) 

The above procedure accounts for the nonparabolic effect up 
to the energy Mc . We then use this average value m t  in the 
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parabolic band structure for GaAs in our calculation for the 
ionization rates. 
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APPENDIX 0 

Copy of viewgraphs entitled: "Impact Ionization Across the Band-edge 

Discontinuity For A Superlattice Photomultiplier" by S. L. Chuang and 

K. Hess, presented at the 1986 Device Research Conference, Amherst. 

Massachusetts, June 21-23, 1986. 
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A new superlattice photodetector  h a s  

been proposed and studied theoret ical ly .  

A s ingle  carrier type (electron) is involved 

and i t  h a s  t h e  potential of minimizing t h e  

excess noise  and achieving an  appreciable 

gain. 
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APPENDIX C 

Reprint of: "Lateral Shift Of An Optical Beam Due To Leaky Surface-Plasmon 

Excitations" by S. L. Chuang, J. Opt. SOC. Am., vol. 3, pp. 593-599, 1986. 
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Lateral shift of an optical beam due to leaky surface=plasmon 
excitations 
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Rec4ived February 12 1985: accepted December 18. I= 
A L.JIy-mW U to thr, O f  th L.ta?d SbiA of a W d  0Ptk.l h rnflOCtd frwn a 
prism-&-metal (rod prian-metd-air) layered contigumtion with wfr#-phmoa e.cit.tioru. The loations of 
the pole and the zblo ofthomtlectbn coefficient for the 1mkysurf.c~-pinamon mode M calculated asone o h  tbr 
thickneon of the centor Lyu. The excibd rurface-phon mode ia leaky kruuu of tha preaeuca of the prkm. 
Both the reaI put urd tho imaeinary put of the poke am affected by the energy 1-. The detailed structure of 
the reflectad intensity and the fo- .ad backwud rbiftr of the n f l d  beam are illustrated. 

1. INTRODUCllON 
Since the optical properties of a m e U c  f h  orh semicon- 
ductor sample can be characterized by a permittivity func- 
tion e(@), the thmriaa and techniqum to determine e(@) have 
been important to our understanding of the optical proper- 
ties of solids. One useful o p t i d  technique is to use the 
surface-plasmon wave theory in the reflectance measure- 
ment.' The excitation of surface-phmon wava is achieved 
either by using the attenuated-total-reflection method or by 
using a grating structure with a proper choice of the phase- 
matching condition. If one measures the reflected power as 
a function of the incidence angle or the frequency, a n o u -  
loua absorption will occur when the surface-plasmon mode is 
excited. Thus the surface-plasmon theory provides a sensi- 
tive tool to determine the permittivity function of the solids. 
For metals, the surface-plasmon mode is excited in the visi- 
ble frequency region, whereas for degenerate semiconduc- 
tors it  is excited in the infrared region. The study of sur- 
face-plasmon excitations may give detailed information 
about the optical properties of the metab and semiwnduc- 
ton. 

However, so far, almost all the studies on the excitation of 
the surface-plasmon theory assume that the incident wave is 
an infmite plane wave. In electromagnetics or in acoustics, 
it  is known that lateral beam displacement may occur when 
the incident wave is a bounded beam and proper phaae- 
matching conditions are satisfied.2 For example, if the inci- 
dent angle is at  the critical angle between two media, the 
well-known Goos-Hbchen shift O C C U M . ~  In acoustics. if 
the incident acoustic beam is from a fluid medium to a solid 
surface and the angle of incidence is near the Rayleigh criti- 
cal angle, the excitation of the Rayleigh wave in the solid, 
which becomes a leaky wave because of the existence of the 
fluid, cause9 a beam shift in the reflected wave.l The result 
of the reflected field is different from that predicted by the 
geometric acoustics. The intensity and phase vsriatiom ef 
the shifted beam give information about the acoustic prop- 
erties of the solids. Thus this idea can be applied in the 
nondestructive testing of the mechanical properties of sol- 
ids. A leaky-wave theory has been successful in explaining 
various observed phenomena in acoustics7 and for multilay- 
ered or grating structuresP10 
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The properties of surface polatitons in layered structures 
havcbeen d& in many references.'J1-'a The attenu- 
ated-total-reflection method' is uwd to determine the opti- 
cal C O M ~ ~ U ~  of thin metallic films14 or a CsBr sample in the 
infrared region. lS Grating structures have ab0 been used to 
study the dirpcrsions of surf- plasmom in mmiconduc- 
tors1*J7 and in metde.18 Both prisms and gratings have 
been used to couple the electromagnetic waw beam into the 
waveguide modes.lS2l Coupling of the finite beam with the 
surface-plasmon mode bas also been studied, including the 
coupling e f f i c i e n e Z 4  and the beam-shift phenomenon.- 
The study on the lateral beam displacement in Ref. 20 close- 
ly follows Ref. 6. which assumes a Taylor-series expansion 
near the incident angie and is applied to the case of the 
critical angle of incidence, Le.. the Gooe-Hiinchen shift. 
That expansion is not valid if there is a pole, which is due to 
the leaky surface-plasmon mode. as will be explained later, 
near the horizontal wave number where the reflection coeffi- 
cient is expanded into the Taylor series. This has been 
pointed out in Ref. 7, and a better approximation, which 
takes into account the singularity of the reflection coeffi- 
cient, has been proposed. The pole of the reflection coeffi- 
cient accounts for the leaky surface mode excited by the 
incident beam. The excitation of the surface electromag- 
netic waves in an Otto configuration (i.e., prism-eir-metal) 
by using the leaky-wave theory has been studied= both 
theoretically and experimentally. In this paper. we apply 
the leaky-wave theory to both the Otto configuration and 
the Kretschmann confwrations (i,e., prism-metal-air). 
The trajectories of the poles and zeros as the middle-layer 
thickness is varied are studied in detail. Other singulariries, 
e.g., the branch points, are also shown. When the branch- 
point contribution is important in certain cases of Kretsch- 
rnann configuration for which the leaky-wave theory for the 
reflection coefficient is no longer valid. a direct numerical 
approach is adopted. and the rpsiilts are a!se shown. 

2. FORMULATION 
The theoretical formulation closely follows Ref. 10, except 
that we deal with the excitation of a leaky surface-plasmon 
mode that requires the incident wave to be T M  polarized 
and either medium 2 or medium 3 has a negative permittivi- 
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Intenuty 
? 

ty in the real part that in d e r  than -* "he geometrical 
configuration of the problem in shown in Fig. 1. where both 
ph -a i r -me ta l  and prism-metal-air c o n f i a t i o n a  are 
considered. A metal such an silver bar a permittivity (-5.19 
+ iO.28) g at the waveIen.gth 4358 A.14 

h u m e  that a bounded beam is incident from the prism 
region with the magnetic field given by 

on the z = 0 plane, where W, = W l m  4, W is the beam- 
width, Bi is the angle of incidence for the center of the beam, 
k,, = kt  sin Bi, kl - a&, and c1 is the permittivity of the 
prism. 
Using the plane-wave spectrum of the incident field at t = 

0 

where 

the reflected magnetic field is given by - *, HR = &(x, L) = r - R(k,)h(k,)exp[ik=.z + i k l p ] ,  I- 2* 
(4) 

where kit = ( w 2 w l  - k,2)1n, with Im (kl,) 10, and the path 
of integration is on the real axin of the complex k, plane. 
R(k,) is the plane-wave reflection coefficient from the lay- 
ered medium. From the expression in Eq. (3), one sees that 
the major contribution to the integral in Eq. (4) is from the 
visible region with k, satisfying 

(5) 

As will be explained in Section 3, if 0, is near the angle 
where the surface plasmon is excited, the reflection coeffi- 
cient can be expreseed as the product of a factor containing a 
zero and a pole in the form 

2 
Ik, - & , I  < w,' 

where Ro is independent of k, aa an approlimation, provided 
that there are no other singularities ouch aa the branch 
points in the visible region. If there are branch points near 
the region in expression (5), the approximation in erp-bn 
(6) U no longer valid, and a direct numerical approach U b g  
Eq. (4) should be taken. This will be the case for the 
KretrchmaM attenuated-total-reflection c o n f i a t i o n ,  M 
will be shown later. The zero and the pole of R(k.1 in the 
complex plane can be obtained numercially, since an exact 
analytical expmion of R(k,) in known. RO can be obtained 
accurately from R(kzi)(ks - &,)I(&, - k& Let us denote 

(7) 

(8) 

The reflected field at z = 0 can be evaluated fiom Eq. (4) and 
expreaaion (6) to belo 

k p  and k, a~ 
k,  = Bp + ia,. 
k, = B,, + ia, 

I F HA%, 0)  = R, [ 1 + i (k, - k,,) W, exp(r2)erfctr) 

x ex$-( &- + ik.1 9 

where 

and erfc(y) is the complementary error function of complex 
'argument 7. 

3. THIiPLANEWAVEREFLXCIlON 
COEFFICIENTS FROM A PRISM-AIR-SILVER 
AND A PRISM-SILVER-AIR CONFIGURATION 
The plane-wave reflection coefficient R(k,) from a layered 
medium shown in Fig. 1 can be written asn 

RI2-RB+ + R12+RB- exp(iZk,d) 
RI2+RSt + R,,-R,- exp(i2k,d) 

R(kJ = ' (11) 

where 

(12) 

One notes that there are only two branch points in Eq. (11) 
occurring at  kl,  = 0 and k b  = 0. This has been noted in Ref. 
10 and also proved by invoking the uniqueness principle in 
solving the boundary-value problem for stratified media.% 
Another algebraic method is simply to look a t  Eq. (11) and 
change k ,  to -&a; one obtains the same expression for the 
reflection coefficient. Let us define the normalized quanti- 
ty 

K k,/k.  (14) 
where k = w& is the wave number in free space. The two 
branch points occur at 
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Fig. 3. (a) The branch cute and the locations of the branch points, the pole kdk, and the zero kJk in the complex a plane for a prirmailver-dr 
configuration. (b) The trajecbriea of the poh nnd the m m  on the complex a plane whon the uilver thicheaa ir varied. 

n l = -  ( 15) 

and 

9"&& (16) 

in the complex K plane. The branch cuts are chosen to ben 
Wk,,l = 0 (17) 

and 

Im[k,l = 0, (18) 

which are shown in Figs. 2(a) and 3(a). 

Case 1. Prism-Air-Metal (Otto Attenuated Totd 
Reflection) Configuration 
The branch cuts, as defined by Eqs. (17) and (la), are shown 
in Fig. 2(a). Once these branch cuts are defined, the pole 

and the zero of the reflection coefficient fork, in Eq. (11) can 
be obtained and written as kdk and kdk  in the K plane after 
being normalized to the free-space wave number k. 

The pole in the reflection coefficient k, corresponds to a 
leaky surface-plasmon mode of this configuration. If the 
prism is not present, the surface-plasmon mode haa a diaper- 
sion relation 

(19) 

If both c2 ana c3 are red and €3 < -cz, the above solution in 
Eq. (19) is real and corresponds to a nondissipative surface- 
plasmon mode. Adding the prism will make this pole com- 
plex because it corresponds to a leaky mode, i.e., the cou- 
pling of the prism and the air-silver surface-plasmon mode 
would make this mode radiate into the prism region. A 
complex pole comes from the fact that it is a leaky mode but 
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not from a power diwipation in the bulk region becaure e 

I f e j  i t a  complex quantity, them is a dimipation in the 
dver  region, and the air4ilver surface-plasmon mode with- 

(19). With the p a  the leaky surface-plarmon mode that 
has the wave number k,/k close to (k,/k)- contains botb 
the leakage and the dimimtion effectr Aa d / A  - -,we haw 
exp(i2kl*d) - 0 [one chooeea Im(kb) > 0 for convenience] 
and 

andaarored 

out the p h  har (kJk)- = 1.1125 + i O . O O 7 1 h  Eq. 

(20) 

Thus both the pole and the zero of R(k,) approach the mot of 
Rp+ = 0 that givea exady Eq. (19) an it ahodd, since. aa d >> 
A, the reflection coeficient R(k,) should be independent of 
the property of the air-oilver interface, and the pol. and the 
zero must canal each other. On the other hand, it d - 0, 
the reflection caefficient can be rewritten 

R12'&3+ Nk, )  - - Rl2+RS1+ = 

1 1 - k ,  -- k ,  
e1 

e1 

4 3 ,  (21) R,' e3 =-I 

-krL,+tJk, 1 Rl3+ 
R(kJ - 

which has a pole at R13+ = 0, Le., 

and we obtain k d k  = 2.0604 + iO.0454. Thua the pole in Fq. 
2(b) wi l l  approach thin value an d/X -4 0. The zero of the 
reflection coefficient d a s  not exist on the complex plane 
s h m  in Fig. 2(b). It actually moves to the bottom Re- 
mann sheet defmed by Re[kl,] < 0 [note that we alwaya 
defme hi(&) 1 0 in our discuesiom here] an it crouw the 
branch cut defmed by Ete(k3 = 0 shown in Fq. 2(a). Thin 
zero wil l  then approach the value 2.0604 + iO.00454 in the 
bottom Riemann sheet with W k , )  < 0. 

Caw 2. Prirm-Md-Air(Kmdmmn A t t e n d  
Total Reflection) Configuntion 
The branch cuts are shown in Fig. 3(a). On the complex I 
plane, the branch cut I m [ k ~ ]  - 0 extenda from the poritive KI 

axis to the positive K R  axis with 0 5 KR S n3 = 1. The other 
branch cut Re(kb)  = 0 extends from KR = nl to +- on the 
real axia since e1 is r e d  The locations of the pole and the 
zero move aa one varies the thicknhse of the metal d. As d/A - 0 [Fig. 3(b)], both the pole and the zero move to the value 
defined by Eq. (19). Le., ( k x / k ) b -  = 1.1125 + i0.0071, an 
can be seen from Eq. (20) with the common factor R p +  = 0 
giving the pole and the zero in the range k ,  of our interest 
[expression (511. As d/X - 0, R(k,) approaches R13-/R13+ 
in &. (21). and we have 

and 

0.8370 - ib, (24) k 
where 6 is an infinitesimal positive number. In this c m ,  the 
pole and the zero do not cancel each other because one is 

k" -- 

alight& above and the other slightly below the branch cut 

Another dif€erence between the Kretdumnn dS 

tion and the Otto confyruration ia the branch-point contri- 
bution. Aa &own in Fig. 3(b) for d/X between 0.02 and 0.03, 
the pole has a real part clom to the branch point n3 = 1.0. 
Thur, if the angle of incidence ia such that kg ia claw to the 
branch point, the approximta formula in exprodon (6) for 
the reflection coefficient wi l l  not be valid aince the branch- 

field. In thir caea a direct numerid integration uring Eq. 
(4) ia neamary, and the resulb ars ab0 given in Section 4. 
Both a lateral-wava contribution (due to the branch point) 
and the rurface-phon-mode contribution (due to the 
pole) am important in determining the reflectad beam. 

Im(ka) 0. 

pointrineulruityailtalro~ecttheint8gralforthereflectad 

Fig. 4. Optical beam shift for the prism-air-silver configuration 
with dlX= 0.4 for four beuaridtha. The dnahed cwvea represent 
the incident-beam intemitioa 1 H,(x, O]z. and the solid m e a  are for 
the nf ld -beun  int8Mitiw I H h ,  012. 
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prism 4 
air -- 

0.7 

i \ 
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' A  ;.- , 
-2  -I 0 1 2 3 -4  

Fq. 5. Optical beam shift for the prinm-air4ilwr codigwation 
with d/X * 0.7 for four beamwidth. Bachrud h shiftr occur 
here. Dashed curves, incident-beam intennitia; solid CUIM. re- 
flected-bun intenaiticr 

prism-air-siiver configuration. The angle of incidence is 
always assumed to be such that the phaw-matching condi- 
tion is satisfied, i.e.. k,, = @,. This is the case that is expect- 
ed to have a maximum displacement. I f k ~  + @,. Eq. (9)  CM 
still be used, and the beam displacement wi l l  be different. 
Some numerical result for the effect of varying the inci- 
dence angle have been discussed in Ref. 8 from a general 
point of view for a multilayered structure. 

A quantity D related to the beam displacement is suggest- 
ed in Ref. 10: 

where the approximate formula for R(k,) in expression (6) 
has been used. The r e d  p s e  of 9, D', denotes the h e r d  
displacement of the reflected beam. To illustrate the beam- 
shift phenomenon. D / X  we calculated for a few values of dlX 
and are shown in the table in Fig. 2(b). One sees that the 
beam shifts can be forward (poeitive) or backward (nega- 
tive), depending on the locations of the pole and the zero. 
For dlh = 0.4, as shown in Fig. 4. the beam shift 0' is always 

9.1 for four beamwidtha If the beamwidth W. is small. the 
shift looh large becauae the horizontal scale is normalized to 
W,. A further approximation to D asaumes that10 

(26) & I Bp kqs 

Thus, if a n  < 0 and up > 0, a positive beam shift occw m 
calculated in Fig. 2(b), d/A = 0.2.0.4, and 0.6. When d/X > 
0.7.0 < a, < up a negative beam shift occurs. Thw are 
illustrated in  fig^. 4(a)-4(d) and 6(a)-6(b) for p i t i v e  beam 
shifta and in Fw. 5(a)-5(d) and 6(c)-6(d) for negative beam 
shih with detailed intensity variations. For WJA - 100. m 
shown in Figs. 4(d) and 5(d), the incident beam is close to a 
plane wave; thus the reflected beam are similar to the inci- 
dent Catmian hama multiplied by the reflection coeffi- 
c i en t  at 8i. In Fig. 5(d). d/A = 0.7 and WJX = 100; the zero 
k, is very close to the real axb. m shown in Fig. 2(b). Thus 
the reflection coefficient is close to zero, and the reflected 
beaqhaa a small intemity. This ia the anomalous a h r p -  

air d '-7 

1 LA / 

I X  \ - 
-2 -I 0 I 2 3 w. 

-2 - I  

Fig. 6. Optical beam shift for the prism-air-silver configuration 
with WJX = 20 and four different air-gap thicknesses, dlX = 0.2,0.6, 
0.7, and 1.0. Dashed curves. incident-beam intensities; solid CUN~S.  

reflected-beam intensities. 
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prism c 
silver d 
oir 7 

/'-'\, (b) + ' 0.08 
/I . \, 

Fie 7. Optid ham &ift for tb. prisnniiiwr-air contirur.tion 
with WJX 2D and fora diflrrCnt 8 i l ~ w - h  d1X - 
0.01.0.oS. 0.15, and 0.2. 

p r i m  1 
silver d 
air 7 

+ = 0.02s 

-2 - I  0 I 2 3 -  

Y a - A = IUU 

tion, M demonatnrted both theoretidy and experimentally 
at  microwave frequency in Ref. 9. 

In Fw 7 and 8, the prlmailnr-air  configuration iscon- 
&ked. lylx for both forward and backwad beam shifta 
am calculated in the table of Fa. 3(b). The detailed intenai- 
ty variatioaa are illustrated in Fig. 7 for different metal 
t h i c h m  d/X = 0.01. 0.08, 0.15, and 0.2. When d/X = 
0.025, the branch-point contribution from K = na = 1.0 is 
important. Aa mentioned in saction 3, the approximation 
for the reflection coefficient in e x p d o n  (6) in the leaky- 
wave thmry7-'0 is not valid. A direct numerical integration 
using Simpson's cub for the reflectad fuld is performed by 
uaing the exact reflection formula in Eqa (4) and (11). The 
beam shift still occum aa e& Thin case is different 
from the coob€ktchen shift in the contributionr from both 
the lateral wave (branch-point contribution) and the ew- 
face-plasmon mode (pole contribution) in OUT case. The 
CoobHhchen shift cornea only from the branch-point con- 
tribution. If one st i l l  uaea the simple pole approximation, 
the resdta (shown M the dotted linea) ace quita different 
from tha exact numerical solution (shown M the soiid lined 
in Fig. 8. For the cam in Fig. 8. the simple leaky-wave 
theory kndn to overestimate the reflection coefficient and 
underestimate the beam shift, if the branch-point contribu- 
tion is ignored. 

= 6328 A, e 4  I (-16.32 + 
iO.54) fo and k,& I (1.0321 + iO.0011). Thus the leaky 
surface-plasmon pole wiI l  be very clam to the branch point 
at ng = 1.0 for the Kreschmann conftguration. Again the 
leaky-wave approximation in aspremion (6) will not be ap- 
propriate, and a direct numerical integration, aa haa been 
done for Fig. 8, is necwsary. 

- __ 

A t  other wavelengths, e.g., 

5. CONCLUSIONS 
The leaky-wave theory hen been applied to study both the 
Otto and the K r e a c h n  attenuated-total-internal-ceflec- 
tion confylurations, when the leaky surface-plasmon modes 
are excited. It is demonstrated theoretically that the beam 
shift and intensity variation due to surface-plasmon excita- 
tion exiat, as predicted from the leaky-wave theory. This 
beam-shift phenomenon may affect the reflectance mea- 
surement if the beamwidth is narrow (for example, much 
l e ~  than 100 wavelengths). A study of the beam-shift phe- 
nomenon may also provide information about the dielectric 
functions of the metal or the semiconductor in the visible or 
the infrared region, respectively. In addition to the prism 
configuratons, grating structures may also be employed for 
similar studies. 
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Fig. 8. Optical beam sh i f t  for the priamailver-air configuration 
with dlX = 0.025. Aa can be MOU from Fig. 3(b). the location of the 
pole b right above the branch point at c = 1.0. Thw a direct 
numerical intagration of Fq. (4) b required to obtain the reflected 
field. D d e d  curvee, incident-beam intemities; dotted w e e ,  re- 
flectad-beam intemitia ming Eq. (9); d i d  cumem. reflectd-bam 
intemitiea wing the direct numerical integration. 
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